High frequency reporting of energy consumption data in smart grids can be used to infer sensitive information regarding the consumers life style and poses serious security and privacy threats. Differential privacy (DP) based privacy models for smart grids ensure privacy when analysing energy consumption data for billing and load monitoring. However, DP models for smart grids are vulnerable to collusion attack where an adversary colludes with malicious smart meters and un-trusted aggregator in order to get private information from other smart meters. We propose an Enhanced Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (E-DPNCT) to protect the privacy of the smart grid data using a split noise cancellation protocol with multiple master smart meters (MSMs) to provide accurate billing and load monitoring and resistance against collusion attacks. We did extensive comparison of our E-DPNCT model with state of the art attack resistant privacy preserving models such as EPIC for collusion attack. We simulate our E-DPNCT model with real time data which shows significant improvement in privacy attack scenarios. Further, we analyze the impact of selecting different sensitivity parameters for calibrating DP noise over the privacy of customer electricity profile and accuracy of electricity data aggregation such as load monitoring and billing.


翻译:在智能电网中高频报告能源消费数据,可以用来推断消费者生活方式的敏感信息,并造成严重的安全和隐私威胁; 智能电网基于不同隐私(DP)的隐私模式在分析用于计费和载荷监测的能源消费数据时确保隐私; 但是,智能电网的DP模式很容易受到串通攻击,因为敌人与恶意智能仪和不信任的聚合器串通,以便从其他智能仪获得私人信息; 我们提议一个智能仪(E-DPNCT)加载监测和计费的强化差异私人取消噪音模式(E-DPNCT),以保护智能电网数据的隐私; 使用一个使用多主智能仪(MSMMM)的分离取消噪音协议,提供准确的计费和负载监测和抵制串通攻击攻击的阻力; 我们广泛比较了我们的E-DPNCT模型与诸如EPIC串通攻击的抗性隐私保护模型的现状。 我们用实时数据模拟我们的E-DPNCT模型,显示隐私攻击情景的显著改善。 此外,我们还分析了选择不同敏感度参数,用于校准DP噪音,例如客户电压图和电压数据的准确度。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员