Visualization recommendation systems must select appropriate visual encodings, yet few findings from visual perception are typically applied within these systems. Knowledge bases provide one way to inscribe perception guidelines, but how do we systematically translate the perception literature into a structured format? We present a literature review across 59 papers that study how to rank effective visualizations based on user performance in various visual analysis tasks. We contribute a comprehensive schema to collate existing theoretical and experimental knowledge and summarize study outcomes at three levels: between encodings, within chart types, and between chart types. We demonstrate how the resulting survey dataset can be utilized to inform automated encoding decisions with three representative visualization recommendation systems. Based on our findings, we highlight new challenges and opportunities for the community in collating visualization design knowledge for a range of visualization recommendation scenarios.
翻译:可视化建议系统必须选择适当的视觉编码,然而这些系统中通常很少应用视觉认知结果。知识基础是输入认知准则的一种方法,但我们如何系统地将认知文献转换成结构化的格式?我们展示了59份论文的文献审查,这些论文研究如何根据用户在各种视觉分析任务中的表现对有效的视觉化进行排序。我们提供了一种综合的模型,以整理现有的理论和实验知识,并在三个层次上总结研究结果:在图表类型和图表类型之间的编码。我们展示了如何利用由此产生的调查数据集为三个有代表性的可视化建议系统作出自动编码决定提供信息。我们根据我们的调查结果,强调了社区在为一系列视觉化建议情景整理可视化设计知识方面的新挑战和机会。