Cryptographic algorithms rely on the secrecy of their corresponding keys. On embedded systems with standard CMOS chips, where secure permanent memory such as flash is not available as a key storage, the secret key can be derived from Physical Unclonable Functions (PUFs) that make use of minuscule manufacturing variations of, for instance, SRAM cells. Since PUFs are affected by environmental changes, the reliable reproduction of the PUF key requires error correction. For silicon PUFs with binary output, errors occur in the form of bitflips within the PUFs response. Modelling the channel as a Binary Symmetric Channel (BSC) with fixed crossover probability $p$ is only a first-order approximation of the real behavior of the PUF response. We propose a more realistic channel model, refered to as the Varying Binary Symmetric Channel (VBSC), which takes into account that the reliability of different PUF response bits may not be equal. We investigate its channel capacity for various scenarios which differ in the channel state information (CSI) present at encoder and decoder. We compare the capacity results for the VBSC for the different CSI cases with reference to the distribution of the bitflip probability according a work by Maes et al.
翻译:加密算法依赖于相应密钥的保密性。 在带有标准的 CMOS 芯片的嵌入系统上, 没有像闪光这样的安全永久内存作为密钥存储器, 秘密密钥可以来自物理不可调函数(PUFs), 这种函数使用诸如SRAM 单元格的微量制造变异。 由于 PUF 受到环境变化的影响, PUF 键的可靠复制需要更正错误。 对于具有二进制输出的硅胶片, 错误发生在 PUFs 响应的比特翻转形式中。 将频道建成具有固定交叉概率的二元对称信道( BSC ) 。 将 PUF 响应的真实行为进行一阶近似。 我们提出了一个更现实的频道模型, 称为 Varying Binary 线谱频道( VBSC ), 它考虑到不同的 PUF 响应比特的可靠性可能不相等。 我们调查其频道状态信息( CSI) 所显示的不同情景的频道能力的频道能力。 我们通过 Ccoder 和 debecker 的 Clipecker 来比较 CBS 的VBS 工作的概率分布。