McCallum-style Cylindrical Algebra Decomposition (CAD) is a major improvement on the original Collins version, and has had many subsequent advances, notably for total or partial equational constraints. But it suffers from a problem with nullification. The recently-justified Lazard-style CAD does not have this problem. However, transporting the equational constraints work to Lazard-style does reintroduce nullification issues. This paper explains the problem, and the solutions to it, based on the second author's Ph.D. thesis and the Brown--McCallum improvement to Lazard. With a single equational constraint, we can gain the same improvements in Lazard-style as in McCallum-style CAD . Moreover, our approach does not fail where McCallum would due to nullification. Unsurprisingly, it does not achieve the same level of improvement as it does in the non-nullified cases. We also consider the case of multiple equational constraints.
翻译:暂无翻译