This note studies phase transitions for the existence of unregularized M-estimators under proportional asymptotics where the sample size $n$ and feature dimension $p$ grow proportionally with $n/p \to \delta \in (0, \infty)$. We study the existence of M-estimators in single-index models where the response $y_i$ depends on covariates $x_i \sim N(0, I_p)$ through an unknown index $w \in R^p$ and an unknown link function. An explicit expression is derived for the critical threshold $\delta_\infty$ that determines the phase transition for the existence of the M-estimator, generalizing the results of Cand`es and Sur (2020) for binary logistic regression to other single-index linear models. Furthermore, we investigate the existence of a solution to the nonlinear system of equations governing the asymptotic behavior of the M-estimator when it exists. The existence of solution to this system for $\delta > \delta_\infty$ remains largely unproven outside the global null in binary logistic regression. We address this gap with a proof that the system admits a solution if and only if $\delta > \delta_\infty$, providing a comprehensive theoretical foundation for proportional asymptotic results that require as a prerequisite the existence of a solution to the system.
翻译:暂无翻译