This paper concerns a theoretical approach that combines topological data analysis (TDA) and sheaf theory. Topological data analysis, a rising field in mathematics and computer science, concerns the shape of the data and has been proven effective in many scientific disciplines. Sheaf theory, a mathematics subject in algebraic geometry, provides a framework for describing the local consistency in geometric objects. Persistent homology (PH) is one of the main driving forces in TDA, and the idea is to track changes of geometric objects at different scales. The persistence diagram (PD) summarizes the information of PH in the form of a multi-set. While PD provides useful information about the underlying objects, it lacks fine relations about the local consistency of specific pairs of generators in PD, such as the merging relation between two connected components in the PH. The sheaf structure provides a novel point of view for describing the merging relation of local objects in PH. It is the goal of this paper to establish a theoretic framework that utilizes the sheaf theory to uncover finer information from the PH. We also show that the proposed theory can be applied to identify the branch numbers of local objects in digital images.
翻译:本文涉及结合地貌数据分析(TDA)和沙叶理论的理论方法。地形数据分析(数学和计算机科学的一个不断上升的领域)涉及数据形状,它涉及数据形状,并在许多科学学科中证明是有效的。沙夫理论(代数几何学的一个数学科目)为描述几何物体的当地一致性提供了一个框架。持久性同质学(PH)是TDA的主要动力之一,其想法是跟踪不同尺度的几何物体的变化。持久性图(PD)以多套形式概述了PH的信息。虽然PD提供了有关基础对象的有用信息,但对于PD中特定生成器的当地一致性缺乏良好的关系,例如PH中两个连接部件之间的合并关系。沙夫结构为描述PH中本地物体的合并关系提供了一个新的观点。本文的目标是建立一个理论框架,利用沙叶理论来发现PH的精细信息。我们还表明,拟议的理论可以应用于确定数字图像中本地物体的分支。