{log} ('setlog') is a satisfiability solver for formulas of the theory of finite sets and finite set relation algebra (FSTRA). As such, it can be used as an automated theorem prover (ATP) for this theory. {log} is able to automatically prove a number of FSTRA theorems, but not all of them. Nevertheless, we have observed that many theorems that {log} cannot automatically prove can be divided into a few subgoals automatically dischargeable by {log}. The purpose of this work is to present a prototype interactive theorem prover (ITP), called {log}-ITP, providing evidence that a proper integration of {log} into world-class ITP's can deliver a great deal of proof automation concerning FSTRA. An empirical evaluation based on 210 theorems from the TPTP and Coq's SSReflect libraries shows a noticeable reduction in the size and complexity of the proofs with respect to Coq.


翻译:{log} ('setlog') 是有限数组和定数代数关系(FSTRA)理论公式的可比较性解析器。 因此, 它可以用作该理论的自动理论验证器( ATP) 。 {log} 能够自动证明FSTRA的一些理论, 但不是全部。 然而, 我们观察到, {log} 无法自动证明的许多理论可以分为几个可自动被 {log} 释放的子目标 。 这项工作的目的是展示一个称为 {log}- ITP 的交互式理论验证器( ITP) 原型, 证明将 {log} 适当整合到世界级 ITP 能够提供大量有关FSTRA 的证明自动化。 基于 TP 和 Coq 的苏维利取图书馆 210 条理论的经验性评估显示, 与 Coq 有关的证据的规模和复杂性明显缩小。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月11日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员