Anomalies are occurrences in a dataset that are in some way unusual and do not fit the general patterns. The concept of the anomaly is usually ill-defined and perceived as vague and domain-dependent. Moreover, despite some 250 years of publications on the topic, no comprehensive and concrete overviews of the different types of anomalies have hitherto been published. By means of an extensive literature review this study therefore offers the first theoretically principled and domain-independent typology of data anomalies, and presents a full overview of anomaly types and subtypes. To concretely define the concept of the anomaly and its different manifestations, the typology employs five dimensions: data type, cardinality of relationship, anomaly level, data structure, and data distribution. These fundamental and data-centric dimensions naturally yield 3 broad groups, 9 basic types and 63 subtypes of anomalies. The typology facilitates the evaluation of the functional capabilities of anomaly detection algorithms, contributes to explainable data science, and provides insights into relevant topics such as local versus global anomalies.


翻译:异常现象是在以某种方式不同寻常和不符合一般模式的数据集中发生的,异常现象的概念通常定义不当,被认为模糊不清,而且取决于领域;此外,尽管就这一专题发表了约250年的出版物,但迄今没有发表过关于不同类型异常现象的全面和具体概览,因此,通过广泛文献审查,本研究报告提供了数据异常现象的第一个理论原则性和根据领域独立的分类,并全面概述了异常现象的类型和子类型;为了具体界定异常现象的概念及其不同表现形式,分类有五个方面:数据类型、关系的主要程度、异常程度、数据结构和数据分布。这些以数据为中心的基本方面自然产生了3大类、9个基本类型和63个次类型异常现象。通过广泛文献审查,分类有助于评估异常检测算法的功能能力,有助于解释可解释的数据科学,并对当地与全球异常现象等相关专题提供洞察力。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【Nature-MI】可解释人工智能的药物发现
专知会员服务
45+阅读 · 2020年11月1日
专知会员服务
40+阅读 · 2020年9月6日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
4+阅读 · 2018年11月6日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员