Cyberthreats are an increasingly common risk to the power grid and can thwart secure grid operation. We propose to extend contingency analysis (CA) that is currently used to secure the grid against natural threats to protect against cyberthreats. However, unlike traditional N-1 or N-2 contingencies, cyberthreats (e.g., MadIoT) require CA to solve harder N-k (with k >> 2) contingencies in a practical amount of time. Purely physics-based solvers, while robust, are slow and may not solve N-k contingencies in a timely manner, whereas the emerging data-driven alternatives to power grid analytics are fast but not sufficiently generalizable, interpretable, or scalable. To address these challenges, we propose a novel conditional Gaussian Random Field-based data-driven method that is bothfast and robust. It achieves speedup by improving starting points for the physical solvers. To improve the physical interpretability and generalizability, the proposed method incorporates domain knowledge by considering the graphical nature of the grid topology. To improve scalability, the method applies physics-informed regularization that reduces the model size and complexity. Experiments validate that simulating MadIoT-induced N-k contingencies with our warm starter requires 5x fewer iterations for a realistic 2000-bus system.


翻译:网络攻击越来越常见,对电网造成的威胁也日益增多。我们建议扩展电网容错分析(CA)以保护电网免受网络攻击侵害。然而,与传统的N-1或N-2容错不同,网络攻击(例如MadIoT)需要CA在实际时间内解决更难的N-k容错(k>> 2)。纯物理解算器虽然稳健,但速度较慢,可能无法及时解决N-k容错,而新兴的数据驱动电网分析替代方法虽然速度快,但不足够可泛化、可解释和可扩展。为解决这些挑战,我们提出了一种新颖的基于条件高斯随机场的数据驱动方法,同时具有速度和稳健性。它通过改进物理解算器的起点来提高速度。为了提高物理可解释性和可泛化性,所提出的方法通过考虑电网拓扑图的图形特性来融合领域知识。为了提高可扩展性,该方法应用了物理学知识的规则化,降低了模型大小和复杂度。实验验证了在我们的热启动下模拟MadIoT引起的N-k容错,对于实际的2000巴斯系统需要5倍少的迭代次数。

0
下载
关闭预览

相关内容

网络攻击是指任何非授权而进入或试图进入他人计算机网络的行为。
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员