项目名称: 多随机激励下风电机组在线辨识建模研究

项目编号: No.51207045

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 电气科学与工程学科

项目作者: 潘学萍

作者单位: 河海大学

项目金额: 25万元

中文摘要: 本项目以在线辨识风电机组各组成模块的模型参数为目标,以构建有效的参数辨识算法为基础,研究多随机激励下,风电机组的驱动系统、风力发电机、风电控制系统的参数是否可以辨识、如何辨识的机理。根据激励信号的时间尺度及风电机组快变/慢变动态特性的对应关系,将受扰轨线进行多尺度分解,解耦辨识与快变/慢变动态对应的模型参数;基于此,分析多随机激励下风电机组参数的可辨识性;提出综合考虑频域灵敏度与激励信号强度的功率谱灵敏度指标,分析风电机组参数辨识的难易度;采用2步辨识的思路,先将风电机组模型参数在时间尺度上解耦辨识,再协调优化获得风电机组的所有参数;以大扰动激励下的参数辨识结果为基准,校核并修正小扰动激励下的辨识值。本研究将确立符合实际运行工况的风电机组模型参数,为大规模风电场并网研究提供有效的参数。

中文关键词: 风电机组;建模;参数辨识;模型验证;模型误差

英文摘要: This proposal aims to identify model parameters for wind turbine generators(WTGs) by online identification algorithms. It studies the model parameter identifiability and how to identify them for each component (wind turbine, generator/converter,converter control) of WTGs following multiple stochastic excitations. Firstly, the measured ambient data excited by wind turbulence and load random variations are decomposed into different time-scale components, with the purpose of making the fast and slow model parameters to be identified separately. Secondly, the parameter identifiability of WTGs is studied. Thirdly, the sensitivity index, which takes into account both frequency-domain sensitivity and power spectral density of input signals is proposed to measure the difficulty of identification, which means the possibility of obtaining the accurate values for the parameters. Fourthly, the two step identification process is presented: (1) use the stochastic subspace identification (SSI) to estimate the parameters corresponding to fast/slow dynamic performance; (2)apply the coordinate optimization technique to get all parameters. Lastly, the identified results following severe disturbances are used as references to validate the parameters identified from ambient data. This project attempts to attain accurate representat

英文关键词: wind turbine generator;modelling;parameter estimation;model validation;model error

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
专知会员服务
16+阅读 · 2021年7月31日
【NeurIPS2020】因果推断学习教程,70页ppt
专知会员服务
190+阅读 · 2020年12月12日
少即是多?非参数语言模型,68页ppt
专知会员服务
23+阅读 · 2020年11月22日
【NeurIPS 2020】视觉和语言表示学习的大规模对抗性训练
专知会员服务
14+阅读 · 2020年10月27日
【NeurIPS 2020】大规模分布式鲁棒优化方法
专知会员服务
25+阅读 · 2020年10月13日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
ICML 2021 | AlphaNet:基于α-散度的超网络训练方法
PaperWeekly
0+阅读 · 2021年12月28日
已删除
将门创投
11+阅读 · 2019年4月26日
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
一种轻量级在线多目标车辆跟踪方法
极市平台
13+阅读 · 2018年8月18日
相对的判别器:现有GAN存在关键属性缺失
论智
33+阅读 · 2018年7月4日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
1+阅读 · 2022年4月15日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
24+阅读 · 2018年10月24日
小贴士
相关VIP内容
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
专知会员服务
16+阅读 · 2021年7月31日
【NeurIPS2020】因果推断学习教程,70页ppt
专知会员服务
190+阅读 · 2020年12月12日
少即是多?非参数语言模型,68页ppt
专知会员服务
23+阅读 · 2020年11月22日
【NeurIPS 2020】视觉和语言表示学习的大规模对抗性训练
专知会员服务
14+阅读 · 2020年10月27日
【NeurIPS 2020】大规模分布式鲁棒优化方法
专知会员服务
25+阅读 · 2020年10月13日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
1+阅读 · 2022年4月15日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
24+阅读 · 2018年10月24日
微信扫码咨询专知VIP会员