Sepsis is the leading cause of mortality in the ICU, responsible for 6% of all hospitalizations and 35% of all in-hospital deaths in USA. However, there is no universally agreed upon strategy for vasopressor and fluid administration. It has also been observed that different patients respond differently to treatment, highlighting the need for individualized treatment. Vasopressors and fluids are administrated with specific effects to cardiovascular physiology in mind and medical research has suggested that physiologic, hemodynamically guided, approaches to treatment. Thus we propose a novel approach, exploiting and unifying complementary strengths of Mathematical Modelling, Deep Learning, Reinforcement Learning and Uncertainty Quantification, to learn individualized, safe, and uncertainty aware treatment strategies. We first infer patient-specific, dynamic cardiovascular states using a novel physiology-driven recurrent neural network trained in an unsupervised manner. This information, along with a learned low dimensional representation of the patient's lab history and observable data, is then used to derive value distributions using Batch Distributional Reinforcement Learning. Moreover in a safety critical domain it is essential to know what our agent does and does not know, for this we also quantify the model uncertainty associated with each patient state and action, and propose a general framework for uncertainty aware, interpretable treatment policies. This framework can be tweaked easily, to reflect a clinician's own confidence of the framework, and can be easily modified to factor in human expert opinion, whenever it's accessible. Using representative patients and a validation cohort, we show that our method has learned physiologically interpretable generalizable policies.
翻译:骨折是伊斯兰法院联盟的主要死亡原因,占所有住院病人的6%,占美国住院病人死亡总数的35%。然而,没有普遍一致的血管压抑和液压管理战略。人们也观察到,不同的病人对治疗的反应不同,突出了个性化治疗的需要。血管压抑和液体的处理对心血管生理和医学研究有具体影响,表明生理学、血液动力学指导、治疗方法。因此,我们提出了一个新颖的方法,利用和统一数学模型、深层学习、强化学习和不确定性测试战略的互补优势,学习个性化、安全和不确定性的治疗战略。我们首先用新的生理驱动的经常性神经网络,在思想和医学研究中进行不超强的训练。这一信息,加上对病人实验室历史和观察数据的可理解的低维度描述,然后用来利用数学模型、深度分析、深层学习、强化学习和不确定性的辅助力量,学习个体化、安全和动态的心血管状态状态状态状态, 也能够让我们了解一个至关重要的机理学框架。此外,我们用一种关键的方法来解释, 能够解释一个关键的领域解释, 解释,我们可以用来解释。一个关键的机能解释, 解释,我们用来解释, 解释,我们这个工具可以用来解释。一个解释一个关键的机能解释, 解释一个解释, 解释一个解释一个工具可以用来解释一个解释, 解释一个解释, 解释一个解释一个解释。一个基础, 工具可以用来解释一个解释一个解释。一个解释一个解释。一个解释, 工具可以用来解释。