Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (\ie the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (\ie voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.
翻译:年龄是描述正常衰老轨迹下预期脑部解剖状态的重要变量。与该正常衰老轨迹相比偏差可能为神经系统疾病提供一些见解。在神经影像学中,预测的脑龄被广泛用于分析不同疾病。然而,仅使用脑龄差信息(即实际年龄和估计年龄之间的差值)可能对疾病分类问题不足够提供信息。在本文中,我们提出通过结构磁共振成像估计脑结构年龄来扩展全局脑龄的概念。为此,首先使用深度学习模型集合估计3D衰老图(即基于体素的脑部年龄估计)。然后,使用3D分割掩模来获得最终的脑结构年龄。该生物标志物可在几种情况下使用。首先,它可以用于准确估计群体水平上的脑龄异常检测。在这种情况下,我们的方法优于几种最先进的方法。其次,脑结构年龄可以用于计算每个脑结构的与正常衰老过程的偏差。该特征可用于多种疾病分类任务,以进行准确的个体差异诊断。最后,可以可视化个体的脑结构年龄偏差,提供有关脑异常的见解,并在实际的医疗环境中帮助临床医生。