In a joint work with D. Bennequin, we suggested that the (negative) minima of the 3-way multivariate mutual information correspond to Borromean links, paving the way for providing probabilistic analogs of linking numbers. This short note generalizes the correspondence of the minima of k-multivariate interaction information with k Brunnian links in the binary variable case. Following Jakulin and Bratko, the negativity of the associated K-L divergence of the joint probability law with its Kirkwood approximation implies an obstruction to local decomposition into lower order interactions than k, defining a local decomposition inconsistency that reverses Abramsky's contextuality local-global relation. Those negative k-links provide a straightforward definition of collective emergence in complex k-body interacting systems or dataset.
翻译:在与D. Bennequin的共同努力中,我们建议,三维多变量相互信息的(负)微型与Borrobine链接相对应,为提供链接数字的概率模拟铺平了道路。这个简短的注释概括了k-多变量互动信息与k Brunnian链接在二进制变数案件中的对应。在Jakulin和Bratko之后,联合概率法与Kirkwood近似法的关联K-L差异的消极性意味着妨碍当地分解成低于K的顺序互动,从而界定了地方分解的不一致性,从而逆转了Abramsky的上下文性地方-全球关系。这些负面的k链接为在复杂的 k-体互动系统或数据集中集体出现提供了一个直接的定义。