We consider a perimeter defense problem in a planar conical environment in which a single vehicle, having a finite capture radius, aims to defend a concentric perimeter from mobile intruders. The intruders are arbitrarily released at the circumference of the environment and move radially toward the perimeter with fixed speed. We present a competitive analysis approach to this problem by measuring the performance of multiple online algorithms for the vehicle against arbitrary inputs, relative to an optimal offline algorithm that has access to all future inputs. In particular, we first establish a necessary condition on the parameter space to guarantee finite competitiveness of any algorithm, and then characterize a parameter regime in which the competitive ratio is guaranteed to be at least 2 for any algorithm. We then design and analyze three online algorithms and characterize parameter regimes for which they have finite competitive ratios. Specifically, our first two algorithms are provably 1, and 2-competitive, respectively, whereas our third algorithm exhibits a finite competitive ratio that depends on the problem parameters. Finally, we provide numerous parameter space plots providing insights into the relative performance of our algorithms.
翻译:我们从一个有一定的捕获半径的单一车辆在平面上的定位环境中考虑周边防御问题。入侵者在环境环绕下被任意释放,以固定速度向周边移动。我们对这一问题提出一种竞争性分析方法,通过测量该车辆的多种在线算法的性能来与任意输入相对比,相对于一种能够获取未来所有投入的最佳离线算法。特别是,我们首先对参数空间设定一个必要的条件,以保证任何算法的有限竞争力,然后确定一个参数制度,保证任何算法的竞争比率至少为2个。然后我们设计和分析三种在线算法,并描述其具有有限竞争比率的参数制度。具体地说,我们头两种算法分别具有可辨别性1和2个竞争性,而我们的第三种算法则显示了取决于问题参数的有限竞争比率。最后,我们提供了许多参数空间图,以洞察我们算算算法的相对性能。