Quadrotors can achieve aggressive flight by tracking complex maneuvers and rapidly changing directions. Planning for aggressive flight with trajectory optimization could be incredibly fast, even in higher dimensions, and can account for dynamics of the quadrotor, however, only provides a locally optimal solution. On the other hand, planning with discrete graph search can handle non-convex spaces to guarantee optimality but suffers from exponential complexity with the dimension of search. We introduce a framework for aggressive quadrotor trajectory generation with global reasoning capabilities that combines the best of trajectory optimization and discrete graph search. Specifically, we develop a novel algorithmic framework that interleaves these two methods to complement each other and generate trajectories with provable guarantees on completeness up to discretization. We demonstrate and quantitatively analyze the performance of our algorithm in challenging simulation environments with narrow gaps that create severe attitude constraints and push the dynamic capabilities of the quadrotor. Experiments show the benefits of the proposed algorithmic framework over standalone trajectory optimization and graph search-based planning techniques for aggressive quadrotor flight.


翻译:四方可以通过跟踪复杂操作和快速变化的方向实现侵略性飞行。 计划以轨迹优化进行侵略性飞行可能非常迅速, 即使是在较高尺寸, 并且能够考虑到四重体体的动态, 但只能提供一种当地最佳的解决办法。 另一方面, 使用离散图形搜索的规划可以处理非曲线空间, 以保证最佳性, 但却在搜索的层面受到指数复杂性的影响。 我们引入了攻击性四重体体轨道生成框架, 其全球推理能力可以结合最佳轨迹优化和离散图形搜索。 具体地说, 我们开发了一个新型的算法框架, 将这两种方法互为补充, 产生轨迹, 并具有可辨别到离散的完整保证。 我们展示并量化分析我们算法在具有狭小差距的模拟环境中的性能, 造成严重的态度限制, 并推动四重体体体的动态能力。 实验表明, 拟议的算法框架比独立轨迹优化和以图表为基础的搜索规划技术更有利。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月16日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员