Neural networks are getting better accuracy with higher energy and computational cost. After quantization, the cost can be greatly saved, and the quantized models are more hardware friendly with acceptable accuracy loss. On the other hand, recent research has found that neural networks are vulnerable to adversarial attacks, and the robustness of a neural network model can only be improved with defense methods, such as adversarial training. In this work, we find that adversarially-trained neural networks are more vulnerable to quantization loss than plain models. To minimize both the adversarial and the quantization losses simultaneously and to make the quantized model robust, we propose a layer-wise adversarial-aware quantization method, using the Lipschitz constant to choose the best quantization parameter settings for a neural network. We theoretically derive the losses and prove the consistency of our metric selection. The experiment results show that our method can effectively and efficiently improve the robustness of quantized adversarially-trained neural networks.


翻译:神经网络越来越精准, 能量和计算成本更高。 量化后, 成本可以大大节省, 量化模型更方便硬件, 准确损失可以接受。 另一方面, 最近的研究发现, 神经网络很容易受到对抗性攻击, 神经网络模型的坚固性只能通过防御方法( 如对抗性培训) 得到改善。 在这项工作中, 我们发现, 对抗性训练的神经网络比普通模型更容易遭受量化损失。 为了同时尽量减少对抗性和量化损失, 并使量化模型变得坚固, 我们建议一种从层到层的对抗性对称量化方法, 使用利普西茨常数来选择神经网络的最佳量化参数设置 。 我们从理论上推断损失, 并证明我们参数选择的一致性。 实验结果显示, 我们的方法可以有效和高效地提高四分对抗性测试的神经网络的稳健性。

1
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
IJCAI 2020丨近期必读七篇【深度强化学习】论文
学术头条
4+阅读 · 2020年9月28日
BERT 瘦身之路:Distillation,Quantization,Pruning
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月22日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
6+阅读 · 2021年3月30日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
4+阅读 · 2019年11月21日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
IJCAI 2020丨近期必读七篇【深度强化学习】论文
学术头条
4+阅读 · 2020年9月28日
BERT 瘦身之路:Distillation,Quantization,Pruning
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年12月22日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
6+阅读 · 2021年3月30日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
4+阅读 · 2019年11月21日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
4+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员