We propose a new splitting method for strong numerical solution of the Cox-Ingersoll-Ross model. For this method, applied over both deterministic and adaptive random meshes, we prove a uniform moment bound and strong error results of order $1/4$ in $L_1$ and $L_2$ for the parameter regime $\kappa\theta>\sigma^2$. We then extend the new method to cover all parameter values by introducing a \emph{soft zero} region (where the deterministic flow determines the approximation) giving a hybrid type method to deal with the reflecting boundary. From numerical simulations we observe a rate of order $1$ when $\kappa\theta>\sigma^2$ rather than $1/4$. Asymptotically, for large noise, we observe that the rates of convergence decrease similarly to those of other schemes but that the proposed method making use of adaptive timestepping displays smaller error constants.
翻译:我们为Cox- Ingersoll-Ross 模型的强量数字解决方案提出了新的分解方法。 对于该方法, 既适用于确定性和适应性随机的中间线, 我们证明对于参数系统 $\ kapa\theta\\\\\sigma2$, 我们为参数系统 $\ kapa\\\\\\ sigma2$ 和$L_2$ 提供了统一的时刻和强烈错误结果。 我们然后通过引入 emph{ solft 0} 区域( 确定性流动决定近似) 将新方法扩大到所有参数值, 给出一种混合型方法来处理反射边界。 从数字模拟中我们观察到的顺序率是$\ kap\ theta gigma2$, 而不是$/ 4$。 对于大噪音来说, 我们观察到, 趋同率与其他方案相似, 但我们观察到, 使用适应性时间步法的拟议方法显示的误差常数较小。