Training Reinforcement Learning (RL) agents in high-stakes applications might be too prohibitive due to the risk associated to exploration. Thus, the agent can only use data previously collected by safe policies. While previous work considers optimizing the average performance using offline data, we focus on optimizing a risk-averse criteria, namely the CVaR. In particular, we present the Offline Risk-Averse Actor-Critic (O-RAAC), a model-free RL algorithm that is able to learn risk-averse policies in a fully offline setting. We show that O-RAAC learns policies with higher CVaR than risk-neutral approaches in different robot control tasks. Furthermore, considering risk-averse criteria guarantees distributional robustness of the average performance with respect to particular distribution shifts. We demonstrate empirically that in the presence of natural distribution-shifts, O-RAAC learns policies with good average performance.
翻译:由于与勘探有关的风险,高占用应用中的培训强化学习代理可能过于令人望而却步。因此,该代理只能使用先前通过安全政策收集的数据。在以往的工作考虑利用离线数据优化平均性能的同时,我们侧重于优化风险规避标准,即CVaR。特别是,我们介绍了离线风险规避行为-Critict(O-RAAC),这是一种无模型的RL算法,能够在完全离线的环境中学习反风险政策。我们表明,在不同的机器人控制任务中,ORRAAC学习的CVaR比风险中性方法高的CVaR政策。此外,考虑到风险规避标准保证了特定分销转移的平均性能的分布性强性。我们从经验上表明,在自然分配变换时,O-RAAC学习的政策具有良好的平均性能。