Tensors are widely used to represent multiway arrays of data. The recovery of missing entries in a tensor has been extensively studied, generally under the assumption that entries are missing completely at random (MCAR). However, in most practical settings, observations are missing not at random (MNAR): the probability that a given entry is observed (also called the propensity) may depend on other entries in the tensor or even on the value of the missing entry. In this paper, we study the problem of completing a partially observed tensor with MNAR observations, without prior information about the propensities. To complete the tensor, we assume that both the original tensor and the tensor of propensities have low multilinear rank. The algorithm first estimates the propensities using a convex relaxation and then predicts missing values using a higher-order SVD approach, reweighting the observed tensor by the inverse propensities. We provide finite-sample error bounds on the resulting complete tensor. Numerical experiments demonstrate the effectiveness of our approach.
翻译:色调被广泛用于代表多向数据阵列。 在一个高压中查找缺失的条目的问题已经得到了广泛研究, 通常假设条目完全随机丢失( MCAR ) 。 然而, 在大多数实际环境中, 观测并非随机丢失( MANAR ): 观察到某一条目的概率( 也称为倾向性) 可能取决于高压中的其他条目, 甚至缺失条目的价值 。 在本文件中, 我们研究在没有事先提供关于运动倾向的信息的情况下, 完成一个部分观测到的强压的问题 。 为了完成反向观测, 我们假设原始的高压和偏向的反向都具有低的多线级。 算法首先估计使用电流放松的偏向, 然后用高压 SVD 方法预测缺失值, 用反向的偏向调整所观测到的微调的重量。 我们为由此得出的完全的反向量实验提供了有限的抽样误差 。 数字实验证明了我们的方法的有效性 。