Convolutional neural networks learns spatial features and are heavily interlinked within kernels. The SE module have broken the traditional route of neural networks passing the entire result to next layer. Instead SE only passes important features to be learned with its squeeze and excitation (SE) module. We propose variations of the SE module which improvises the process of squeeze and excitation and enhances the performance. The proposed squeezing or exciting the layer makes it possible for having a smooth transition of layer weights. These proposed variations also retain the characteristics of SE module. The experimented results are carried out on residual networks and the results are tabulated.


翻译:卷积神经网络学习空间特征,并且在核内部紧密相连。SE模块打破了神经网络传递整个结果到下一层的传统路线。相反,SE仅传递重要的特征,以通过其Squeeze和Excitation(SE)模块进行学习。我们提出了SE模块的变种,这些变种改进了Squeeze和Excitation的过程,并增强了性能。所提出的挤压或激励层使得具有平滑的层权重的过渡成为可能。这些提出的变化还保留了SE模块的特性。实验结果在残差网络上进行,并列出了结果。

0
下载
关闭预览

相关内容

【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月27日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员