We study distributionally robust optimization (DRO) with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We provide convex programming dual reformulation for a general nominal distribution. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. We propose an efficient first-order algorithm with bisection search to solve the dual reformulation. We demonstrate that our proposed algorithm finds $\delta$-optimal solution of the new DRO formulation with computation cost $\tilde{O}(\delta^{-3})$ and memory cost $\tilde{O}(\delta^{-2})$, and the computation cost further improves to $\tilde{O}(\delta^{-2})$ when the loss function is smooth. Finally, we provide various numerical examples using both synthetic and real data to demonstrate its competitive performance and light computational speed.
翻译:我们用Sinkhorn 的距离研究分配强力优化(DRO) -- -- 一种基于昆虫正规化的瓦森斯坦距离的变体。 我们为一般名义分布提供二次编程。 与Wasserstein DRO相比, 它可以计算更大的损失功能类别, 其最坏的分布更合理。 我们提出一个高效的第一阶算法, 进行双分搜索以解决双重重整。 我们证明我们提议的算法找到新的DRO配方的$delta$- 最佳解决方案, 计算成本为$\tilde{O}( delta ⁇ - 3}) $ 和 内存成本 $\ tillde{ O}(\\\\ ta}-2} 美元, 当损失功能平滑时计算成本会进一步提高到$\ tilde{O} (\delta ⁇ -2} 。 最后, 我们提供各种数字示例, 使用合成数据和真实数据来证明其竞争性性性表现和轻度计算速度。