项目名称: 基于情感序列和情感选择的句子多维复合情感识别研究

项目编号: No.61203312

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 全昌勤

作者单位: 合肥工业大学

项目金额: 25万元

中文摘要: 句子情感识别是文本情感分析和理解的基础,针对文本情感表达具有复合性的特点,本研究提出从多维复合情感的角度研究句子情感识别问题。为突破依赖情感词典而无法识别具有情感歧义和复合情感词的问题,首先对句子中的情感词进行检测和多维复合情感识别。通过对多维情感进行编码建立基本情感之间的联系,将这一多标签分类问题转化为单标签分类问题,提高算法效率。在此基础上,利用由情感关键元素组成的情感序列来表达句中各分句的情感,并结合词语的位置信息建立序列分类模型识别分句多维复合情感。同时,通过减少情感序列的数量和设计基于子序列相似的分类算法解决该模型可能产生的数据稀疏问题。对具有多个分句的复杂句,提出基于情感选择的策略:将对分句的特征权重计算问题理解为最优化求解问题,并利用遗传算法作为该最优化问题的搜索算法。对这些关键技术的研究将为辅助心理疾病的预防、治疗,和促进人机交互打下理论和技术基础。

中文关键词: 句子情感识别;多维复合情感;情感模式;分句情感选择;

英文摘要: Sentence emotion recognition is the basis of textual emotion analysis and understanding. According to the characteristic of compound emotion expression in text, this study proposes to recognize sentence emotion from a view of multi-dimensional compound emotions. For the sake of breaking through the problems that the words bear emotion ambiguity and compound emotions are hard to be recognized when depending on emotion lexicons, we first detect and recognize multi-dimensional compound emotions for emotional words in a sentence. By coding of multi-dimensional compound emotions, the links between the basic emotions are established, and the multi-label classification problem is transformed into a single label classification problem, improving the efficiency of the algorithm. On this basis, emotion sequence composed by key emotion elements is proposed to express the emotions of each clause in a sentence, and a sequence-based model combining with word positions is built for clause multi-dimensional compound emotion recognition.In this model, the data sparse problem will be solved by decreasing the number of emotion sequences and by designing the classification algorithm based on subsequence similarity. A strategy based on emotion selection is proposed for the sentences with multiple clauses: the problem of weighting cl

英文关键词: sentence emotion recognition;multidimensional compound emotions;emotion patterns;sub-sentence emotion selection;

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】面向多标签分类的端到端概率标签特征学习
专知会员服务
30+阅读 · 2022年1月27日
专知会员服务
33+阅读 · 2021年9月14日
北航《深度学习事件抽取》文献综述和当前趋势
专知会员服务
83+阅读 · 2021年7月6日
专知会员服务
35+阅读 · 2021年6月16日
【NAACL2021】长序列自然语言处理, 250页ppt
专知会员服务
61+阅读 · 2021年6月7日
《多任务学习》最新综述论文,20页pdf
专知会员服务
123+阅读 · 2021年4月6日
专知会员服务
55+阅读 · 2020年12月20日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
78+阅读 · 2019年10月12日
赛尔原创@EMNLP 2021 Findings | 检索式对话情感回复
哈工大SCIR
0+阅读 · 2022年4月7日
技术动态 | 跨句多元关系抽取
开放知识图谱
49+阅读 · 2019年10月24日
论文浅尝 | 使用循环神经网络的联合事件抽取
开放知识图谱
25+阅读 · 2019年4月28日
【团队新作】连续情感识别,精准捕捉你的小情绪!
中国科学院自动化研究所
16+阅读 · 2018年4月17日
python文本相似度计算
北京思腾合力科技有限公司
24+阅读 · 2017年11月6日
深度学习 | 利用词嵌入对文本进行情感分析
沈浩老师
11+阅读 · 2017年10月19日
现代情感分析方法
Python开发者
13+阅读 · 2017年7月9日
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2018年5月15日
小贴士
相关VIP内容
【AAAI2022】面向多标签分类的端到端概率标签特征学习
专知会员服务
30+阅读 · 2022年1月27日
专知会员服务
33+阅读 · 2021年9月14日
北航《深度学习事件抽取》文献综述和当前趋势
专知会员服务
83+阅读 · 2021年7月6日
专知会员服务
35+阅读 · 2021年6月16日
【NAACL2021】长序列自然语言处理, 250页ppt
专知会员服务
61+阅读 · 2021年6月7日
《多任务学习》最新综述论文,20页pdf
专知会员服务
123+阅读 · 2021年4月6日
专知会员服务
55+阅读 · 2020年12月20日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
78+阅读 · 2019年10月12日
相关资讯
赛尔原创@EMNLP 2021 Findings | 检索式对话情感回复
哈工大SCIR
0+阅读 · 2022年4月7日
技术动态 | 跨句多元关系抽取
开放知识图谱
49+阅读 · 2019年10月24日
论文浅尝 | 使用循环神经网络的联合事件抽取
开放知识图谱
25+阅读 · 2019年4月28日
【团队新作】连续情感识别,精准捕捉你的小情绪!
中国科学院自动化研究所
16+阅读 · 2018年4月17日
python文本相似度计算
北京思腾合力科技有限公司
24+阅读 · 2017年11月6日
深度学习 | 利用词嵌入对文本进行情感分析
沈浩老师
11+阅读 · 2017年10月19日
现代情感分析方法
Python开发者
13+阅读 · 2017年7月9日
相关基金
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员