The future transportation system will be a multi-agent network where connected AI agents can work together to address the grand challenges in our age, e.g., mitigation of real-world driving energy consumption. Distinguished from the existing research on vehicle energy management, which decoupled multiple inputs and multiple outputs (MIMO) control into single-output(MISO) control, this paper studied a multi-agent deep reinforcement learning (MADRL) framework to deal with multiple control outputs simultaneously. A new hand-shaking strategy is proposed for the DRL agents by introducing an independence ratio, and a parametric study is conducted to obtain the best setting for the MADRL framework. The study suggested that the MADRL with an independence ratio of 0.2 is the best, and more than 2.4% of energy can be saved over the conventional DRL framework.
翻译:未来的运输系统将是一个多试剂网络,连接的AI代理商可以在这个网络中共同应对我们这个时代的重大挑战,例如减少真实世界驱动能源消费。与现有的关于车辆能源管理的研究(将多种投入和多种产出(MIIMO)控制分离为单产出控制)不同,本文件研究了一个多试剂深度强化学习框架,以同时处理多种控制产出。为DRL代理商提出了新的手工冲洗战略,引入了独立比率,并进行了参数学研究,以获得MADRL框架的最佳环境。该研究表明,0.2的独立比率的MADRL是最好的,超过2.4%的能源可以在常规DRL框架中保存。