Tchebycheffian splines are smooth piecewise functions whose pieces are drawn from (possibly different) Tchebycheff spaces, a natural generalization of algebraic polynomial spaces. They enjoy most of the properties known in the polynomial spline case. In particular, under suitable assumptions, Tchebycheffian splines admit a representation in terms of basis functions, called Tchebycheffian B-splines (TB-splines), completely analogous to polynomial B-splines. A particularly interesting subclass consists of Tchebycheffian splines with pieces belonging to null-spaces of constant-coefficient linear differential operators. They grant the freedom of combining polynomials with exponential and trigonometric functions with any number of individual shape parameters. Moreover, they have been recently equipped with efficient evaluation and manipulation procedures. In this paper, we consider the use of TB-splines with pieces belonging to null-spaces of constant-coefficient linear differential operators as an attractive substitute for standard polynomial B-splines and rational NURBS in isogeometric Galerkin methods. We discuss how to exploit the large flexibility of the geometrical and analytical features of the underlying Tchebycheff spaces according to problem-driven selection strategies. TB-splines offer a wide and robust environment for the isogeometric paradigm beyond the limits of the rational NURBS model.
翻译:Tchebycheffian Splines 是平滑的片断函数, 其碎片从( 可能不同) Tchebycheff 空格中绘制, 这是对代数多角度空格的自然概括化。 它们享有多边圆柱形样体中的大部分已知属性。 特别是, 在合适的假设下, Tchebychechecheffian Splines 以基础功能( 称为 Tchebycheffian B- splines ( Tchebychefferff ) ( Tchebycheffff ) 来代表它们。 一个特别有趣的子类由Tchebycheffian Splines 组成, 属于常数高效线性线性操作员空格的空格。 它们允许将多数值和指数和三角数函数功能与任何单个形状参数结合起来。 此外, 它们最近配备了高效的评价和操纵程序。 在本文中, 我们认为, 使用属于常数平衡线性线性线性操作员的碎片的TBMSlines, 是标准多数值模型型BS- 宽度空格选择策略的有吸引力的替代物。 我们正调的基质的基质模型选择环境是如何利用了NURBSlimal- 的硬度分析方法, 。 的基质的硬度的基质的基质的硬度的基质的硬度的基质的基质的基质的基质的硬度环境 。