The current design of aerodynamic shapes, like airfoils, involves computationally intensive simulations to explore the possible design space. Usually, such design relies on the prior definition of design parameters and places restrictions on synthesizing novel shapes. In this work, we propose a data-driven shape encoding and generating method, which automatically learns representations from existing airfoils and uses the learned representations to generate new airfoils. The representations are then used in the optimization of synthesized airfoil shapes based on their aerodynamic performance. Our model is built upon VAEGAN, a neural network that combines Variational Autoencoder with Generative Adversarial Network and is trained by the gradient-based technique. Our model can (1) encode the existing airfoil into a latent vector and reconstruct the airfoil from that, (2) generate novel airfoils by randomly sampling the latent vectors and mapping the vectors to the airfoil coordinate domain, and (3) synthesize airfoils with desired aerodynamic properties by optimizing learned features via a genetic algorithm. Our experiments show that the learned features encode shape information thoroughly and comprehensively without predefined design parameters. By interpolating/extrapolating feature vectors or sampling from Gaussian noises, the model can automatically synthesize novel airfoil shapes, some of which possess competitive or even better aerodynamic properties comparing to airfoils used for model training purposes. By optimizing shapes on the learned latent domain via a genetic algorithm, synthesized airfoils can evolve to target aerodynamic properties. This demonstrates an efficient learning-based airfoil design framework, which encodes and optimizes the airfoil on the latent domain and synthesizes promising airfoil candidates for required aerodynamic performance.
翻译:暂无翻译