We study the mixing time of Metropolis-Adjusted Langevin algorithm (MALA) for sampling a target density on $\mathbb{R}^d$. We assume that the target density satisfies $\psi_\mu$-isoperimetry and that the operator norm and trace of its Hessian are bounded by $L$ and $\Upsilon$ respectively. Our main result establishes that, from a warm start, to achieve $\epsilon$-total variation distance to the target density, MALA mixes in $O\left(\frac{(L\Upsilon)^{\frac12}}{\psi_\mu^2} \log\left(\frac{1}{\epsilon}\right)\right)$ iterations. Notably, this result holds beyond the log-concave sampling setting and the mixing time depends on only $\Upsilon$ rather than its upper bound $L d$. In the $m$-strongly logconcave and $L$-log-smooth sampling setting, our bound recovers the previous minimax mixing bound of MALA~\cite{wu2021minimax}.


翻译:本文研究了Metropolis-Adjusted Langevin算法(MALA)在$\mathbb{R}^d$上采样目标密度的混合时间。我们假设目标密度满足$\psi_{\mu}$-等周性质,并且其Hessian的算子范数和迹bounded by $L$ and $\Upsilon$,分别。我们的主要结果是,从热启动开始,为了实现$\epsilon$-总变异距离到目标密度,MALA在$O\left(\frac{(L\Upsilon)^{\frac12}}{\psi_\mu^2} \log\left(\frac{1}{\epsilon}\right)\right)$次迭代中混合。值得注意的是,这个结果不仅适用于对数凹采样设置,而且混合时间仅依赖于$\Upsilon$,而不是其上界$Ld$。在$m$-强对数凹和$L$-对数平滑采样场景中,我们的界限恢复了MALA的先前的最小最大混合界限。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【CVPR2020】视觉推理-可微自适应计算时间
专知会员服务
12+阅读 · 2020年4月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员