We consider the problem of reconstructing a 3D mesh of the human body from a single 2D image as a model-in-the-loop optimization problem. Existing approaches often regress the shape, pose, and translation parameters of a parametric statistical model assuming a weak-perspective camera. In contrast, we first estimate 2D pixel-aligned vertices in image space and propose PLIKS (Pseudo-Linear Inverse Kinematic Solver) to regress the model parameters by minimizing a linear least squares problem. PLIKS is a linearized formulation of the parametric SMPL model, which provides an optimal pose and shape solution from an adequate initialization. Our method is based on analytically calculating an initial pose estimate from the network predicted 3D mesh followed by PLIKS to obtain an optimal solution for the given constraints. As our framework makes use of 2D pixel-aligned maps, it is inherently robust to partial occlusion. To demonstrate the performance of the proposed approach, we present quantitative evaluations which confirm that PLIKS achieves more accurate reconstruction with greater than 10% improvement compared to other state-of-the-art methods with respect to the standard 3D human pose and shape benchmarks while also obtaining a reconstruction error improvement of 12.9 mm on the newer AGORA dataset.
翻译:我们认为将人体的3D网格从单一的2D图像重建成一个2D网格的问题,作为模拟环形优化问题。现有方法往往在假设摄像器弱视镜的情况下,将一个参数统计模型的形状、成型和翻译参数倒退。相比之下,我们首先在图像空间中估计2D像素调整的脊椎,并提议使用PLIKS(Psedo-Lear Leut Internalmatic Solutioner)来通过尽可能减少一个线性最小方位问题来倒退模型参数参数。PLIKS是SMPL模型的线性化配方,它从适当的初始化中提供最佳的形状和形状解决方案。我们的方法是以分析方式计算网络最初的3D网形估计值为基础,而PLIKS则遵循PLIKS的预测3D网格,以获得最佳的解决方案。由于我们的框架使用2D平面相校准的地图,因此对部分封闭性具有内在的特性。为了展示拟议方法的绩效,我们提出定量评价,证实PLIKSSS在以比10GA型号的模型更精确地进行了重建,同时以更精确地改进了12GO型的模型,同时将获得了比10M的模型的模型的更新,而获得了比为12毫米的模型的更新。