We study the recovery of multivariate functions from reproducing kernel Hilbert spaces in the uniform norm. Our main interest is to obtain preasymptotic estimates for the corresponding sampling numbers. We obtain results in terms of the decay of related singular numbers of the compact embedding into $L_2(D,\varrho_D)$ multiplied with the supremum of the Christoffel function of the subspace spanned by the first $m$ singular functions. Here the measure $\varrho_D$ is at our disposal. As an application we obtain near optimal upper bounds for the sampling numbers for periodic Sobolev type spaces with general smoothness weight. Those can be bounded in terms of the corresponding benchmark approximation number in the uniform norm, which allows for preasymptotic bounds. By applying a recently introduced sub-sampling technique related to Weaver's conjecture we mostly lose a $\sqrt{\log n}$ and sometimes even less. Finally we point out a relation to the corresponding Kolmogorov numbers.


翻译:我们研究在统一规范中复制核心Hilbert 空间的多变量函数。 我们的主要利益是获取相应的抽样数字的精密估计值。 我们从嵌入$_ (D),\ varrho_D) $(美元) 的紧凑点数相关单数的衰减中获取结果, 乘以由第一个单项函数所覆盖的子空间的 Christoffel 函数的精度值。 在这里, $\ varrho_ D$( $) 的测量值可供我们使用。 作为我们获得的用于具有一般光滑度的周期 Sobolev 类型空间取样数字的接近最佳上限的应用程序。 这些应用可以按照统一规范中的相应基准近似值的近似值进行约束, 从而允许使用纯度界限。 通过应用最近引入的与 Weaver 的假设值相关的子抽样技术, 我们大多损失一美元, 有时甚至更少。 最后, 我们指出与相应的 Kolmogorov 数字有关。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
0+阅读 · 2021年5月26日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员