We present a novel deep generative model based on non i.i.d. variational autoencoders that captures global dependencies among observations in a fully unsupervised fashion. In contrast to the recent semi-supervised alternatives for global modeling in deep generative models, our approach combines a mixture model in the local or data-dependent space and a global Gaussian latent variable, which lead us to obtain three particular insights. First, the induced latent global space captures interpretable disentangled representations with no user-defined regularization in the evidence lower bound (as in $\beta$-VAE and its generalizations). Second, we show that the model performs domain alignment to find correlations and interpolate between different databases. Finally, we study the ability of the global space to discriminate between groups of observations with non-trivial underlying structures, such as face images with shared attributes or defined sequences of digits images.
翻译:我们提出了一个基于非(i.d.d.d.)变异自动电解码器的新颖的深层基因模型,它以完全不受监督的方式捕捉各种观测之间的全球依赖性。与最近以深变异模型进行全球建模的半监督的替代方案相比,我们的方法将本地或数据依赖空间的混合模型和全球高斯潜伏变量结合起来,这导致我们获得三种特殊的洞察力。首先,诱导潜伏全球空间捕捉到可解释的分解表达方式,在证据下限(如$\beta$-VAE及其一般化)中没有用户定义的正规化。第二,我们展示了模型进行域对齐以寻找不同数据库之间的关联和内推法。最后,我们研究了全球空间对带有非三角基本结构的观察组进行区分的能力,例如具有共同属性的面图象或数字图像的定序。