We investigate whether pre-training exclusively on dialogue data results in formally and functionally apt small language models. Based on this pre-trained llamalogue model, we employ a variety of fine-tuning strategies to enforce "more communicative" text generations by our models. Although our models underperform on most standard BabyLM benchmarks, they excel at dialogue continuation prediction in a minimal pair setting. While PPO fine-tuning has mixed to adversarial effects on our models, DPO fine-tuning further improves their performance on our custom dialogue benchmark.
翻译:暂无翻译