The key challenge in learning dense correspondences lies in the lack of ground-truth matches for real image pairs. While photometric consistency losses provide unsupervised alternatives, they struggle with large appearance changes, which are ubiquitous in geometric and semantic matching tasks. Moreover, methods relying on synthetic training pairs often suffer from poor generalisation to real data. We propose Warp Consistency, an unsupervised learning objective for dense correspondence regression. Our objective is effective even in settings with large appearance and view-point changes. Given a pair of real images, we first construct an image triplet by applying a randomly sampled warp to one of the original images. We derive and analyze all flow-consistency constraints arising between the triplet. From our observations and empirical results, we design a general unsupervised objective employing two of the derived constraints. We validate our warp consistency loss by training three recent dense correspondence networks for the geometric and semantic matching tasks. Our approach sets a new state-of-the-art on several challenging benchmarks, including MegaDepth, RobotCar and TSS. Code and models will be released at https://github.com/PruneTruong/DenseMatching.


翻译:学习密度高的函文的关键挑战在于缺乏真实图像配对的地面-真相匹配。 光度一致性损失提供了不受监督的替代物。 虽然光度一致性损失提供了不受监督的替代物, 但它们在巨大的外观变化中挣扎, 这些外观变化在几何和语义匹配任务中是无处不在的。 此外, 依赖合成培训配对的方法往往缺乏对真实数据的概括性。 我们提出Warp Consisticent, 这是一种不受监督的学习目标, 用于密集的函文回归。 我们的目标是在外观和视图点变化巨大的情况下也有效。 如果有一副真实图像, 我们首先通过对原始图像中的一幅随机抽样转折, 来构建一个图像三重体。 我们从观察和实证结果中, 设计出一个通用的、 不受监督的目标, 使用两种衍生的制约。 我们通过培训最近三个密集的几何和语义匹配任务通信网络, 来验证我们的战争一致性损失。 我们的方法在几个挑战的基准上设置了新的状态, 包括Megadepticar 和 TSSrung 和模型。 。 将发布 http://truggsmus/ 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2021年5月16日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年5月29日
Arxiv
14+阅读 · 2021年3月10日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2021年5月16日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员