We study pseudorandomness properties of permutations on $\{0,1\}^n$ computed by random circuits made from reversible $3$-bit gates (permutations on $\{0,1\}^3$). Our main result is that a random circuit of depth $n \cdot \tilde{O}(k^2)$, with each layer consisting of $\approx n/3$ random gates in a fixed nearest-neighbor architecture, yields almost $k$-wise independent permutations. The main technical component is showing that the Markov chain on $k$-tuples of $n$-bit strings induced by a single random $3$-bit nearest-neighbor gate has spectral gap at least $1/n \cdot \tilde{O}(k)$. This improves on the original work of Gowers [Gowers96], who showed a gap of $1/\mathrm{poly}(n,k)$ for one random gate (with non-neighboring inputs); and, on subsequent work [HMMR05,BH08] improving the gap to $\Omega(1/n^2k)$ in the same setting. From the perspective of cryptography, our result can be seen as a particularly simple/practical block cipher construction that gives provable statistical security against attackers with access to $k$~input-output pairs within few rounds. We also show that the Luby--Rackoff construction of pseudorandom permutations from pseudorandom functions can be implemented with reversible circuits. From this, we make progress on the complexity of the Minimum Reversible Circuit Size Problem (MRCSP), showing that block ciphers of fixed polynomial size are computationally secure against arbitrary polynomial-time adversaries, assuming the existence of one-way functions (OWFs).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月30日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员