This work revisits the ChaLearn First Impressions database, annotated for personality perception using pairwise comparisons via crowdsourcing. We analyse for the first time the original pairwise annotations, and reveal existing person perception biases associated to perceived attributes like gender, ethnicity, age and face attractiveness. We show how person perception bias can influence data labelling of a subjective task, which has received little attention from the computer vision and machine learning communities by now. We further show that the mechanism used to convert pairwise annotations to continuous values may magnify the biases if no special treatment is considered. The findings of this study are relevant for the computer vision community that is still creating new datasets on subjective tasks, and using them for practical applications, ignoring these perceptual biases.
翻译:这项工作重新审视了ChaLearn First Impressimations数据库,该数据库是利用众包的对称比较来说明个性感。我们首次分析了原始对称说明,并揭示了与性别、族裔、年龄和面貌吸引力等感知属性相关的现有个人感知偏见。我们展示了个人感知偏见如何影响主观任务的数据标签,而这种主观任务现在很少受到计算机视觉和机器学习社区的注意。我们进一步显示,如果不考虑特殊待遇,将配对说明转换为连续价值的机制可能会放大偏见。本研究的结果对于仍在创建主观任务新数据集的计算机视觉界具有相关性,并用于实际应用,无视这些观念偏见。