The field of dynamic graph algorithms aims at achieving a thorough understanding of real-world networks whose topology evolves with time. Traditionally, the focus has been on the classic sequential, centralized setting where the main quality measure of an algorithm is its update time, i.e. the time needed to restore the solution after each update. While real-life networks are very often distributed across multiple machines, the fundamental question of finding efficient dynamic, distributed graph algorithms received little attention to date. The goal in this setting is to optimize both the round and message complexities incurred per update step, ideally achieving a message complexity that matches the centralized update time in $O(1)$ (perhaps amortized) rounds. Toward initiating a systematic study of dynamic, distributed algorithms, we study some of the most central symmetry-breaking problems: maximal independent set (MIS), maximal matching/(approx-) maximum cardinality matching (MM/MCM), and $(\Delta + 1)$-vertex coloring. This paper focuses on dynamic, distributed algorithms that are deterministic, and in particular -- robust against an adaptive adversary. Most of our focus is on the MIS algorithm, which achieves $O\left(m^{2/3}\log^2 n\right)$ amortized messages in $O\left(\log^2 n\right)$ amortized rounds in the Congest model. Notably, the amortized message complexity of our algorithm matches the amortized update time of the best-known deterministic centralized MIS algorithm by Gupta and Khan [SOSA'21] up to a polylog $n$ factor. The previous best deterministic distributed MIS algorithm, by Assadi et al. [STOC'18], uses $O(m^{3/4})$ amortized messages in $O(1)$ amortized rounds, i.e., we achieve a polynomial improvement in the message complexity by a polylog $n$ increase to the round complexity; moreover, the algorithm of Assadi et al. makes an implicit assumption that the [...]


翻译:动态图形算法的字段( 动态图形算法的字段) 旨在彻底理解真实世界网络的复杂度, 这些网络的地形将随着时间而演变。 传统上, 焦点一直放在经典的序列式中央设置上, 其中, 算法的主要质量度量是更新时间, 即每次更新后恢复解决方案所需的时间。 虽然真实生活网络通常分布在多个机器之间, 寻找高效动态、 分布式图表算法的基本问题到现在都很少引起注意。 此设置的目标是优化每更新一步产生的圆形和信息复杂性, 最好实现与集中更新时间( $( perhaps 摊算法) 匹配的信息复杂度, 以美元( 美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (的) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)(美元)(美元)(美元)(美元)(美元) (

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年7月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月12日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年7月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员