In this paper novel simulation methods are provided for the Generalised inverse Gaussian (GIG) L\'{e}vy process. Such processes are intractable for simulation except in certain special edge cases, since the L\'{e}vy density associated with the GIG process is expressed as an integral involving certain Bessel Functions, known as the Jaeger Integral in diffusive transport applications. We here show for the first time how to solve the problem indirectly, using generalised shot-noise methods to simulate the underlying point processes and constructing an auxiliary variables approach that avoids any direct calculation of the integrals involved. The augmented bivariate process is still intractable and so we propose a novel thinning method based on upper bounds on the intractable integrand. Moreover our approach leads to lower and upper bounds on the Jaeger integral itself, which may be compared with other approximation methods. We note that the GIG process is the required Brownian motion subordinator for the generalised hyperbolic (GH) L\'{e}vy process and so our simulation approach will straightforwardly extend also to the simulation of these intractable proceses. Our new methods will find application in forward simulation of processes of GIG and GH type, in financial and engineering data, for example, as well as inference for states and parameters of stochastic processes driven by GIG and GH L\'{e}vy processes.


翻译:本文为Gaussian (GIG) L\ {{{{{{{{{{{{{{{{{{{{{{}}}}通用模拟过程提供了新型的模拟方法。这种过程除了某些特殊的边缘情况外,对于模拟过程是难以操作的,因为与GIG过程相关的L\{{{{{{{{{{{{{{{{{{{{{{{{{}}在某些特殊的边缘情况中,与GIG进程相关的密度是某些贝塞尔功能(在细小运输应用中被称为Jaeger集成集成体)的一个组成部分。我们在这里第一次展示了如何间接解决问题,使用一般的射击方法模拟深点过程,并构建一个辅助变量方法,避免直接计算所涉及的整体整体整体。扩大的双差过程仍然是棘手的,因此我们提出了一种基于精密的内脏的上界的新的稀薄方法。此外,我们的方法导致Jaeger 本身的低端和上界,这可能与其他近端方法相比较。我们注意到GGGG进程需要布朗运动运动运动运动的动作,因此我们的模拟方法将直接延伸到GGGGGGGG的模拟过程和前方和GGGIG的新型的模拟,作为GIG的模拟和G的模型和GIG的模型和前导为G的模型。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【CVPR2021】反事实的零次和开集识别
专知会员服务
25+阅读 · 2021年5月7日
专知会员服务
76+阅读 · 2021年3月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月11日
Arxiv
0+阅读 · 2021年7月9日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员