This paper introduces the \emph{Simultaneous Assignment Problem}. Here, we are given an assignment problem on some of the subgraphs of a given graph, and we are looking for a heaviest assignment which is feasible when restricted to any of the assignment problems. More precisely, we are given a graph with a weight- and a capacity function on its edges and a set of its subgraphs $H_1,\dots,H_k$ along with a degree upper bound function for each of them. In addition, we are also given a laminar system on the node set with an upper bound on the degree-sum of the nodes in each set in the system. We want to assign each edge a non-negative integer below its capacity such that the total weight is maximized, the degrees in each subgraph are below the degree upper bound associated with the subgraph, and the degree-sum bound is respected in each set of the laminar system. The problem is shown to be APX-hard in the unweighted case even if the graph is a forest and $k=2$. This also implies that the Distance matching problem is APX-hard in the weighted case and that the Cyclic distance matching problem is APX-hard in the unweighted case. We identify multiple special cases when the problem can be solved in strongly polynomial time. One of these cases, the so-called locally laminar case, is a common generalization of the Hierarchical b-matching problem and the Laminar matchoid problem, and it implies that both of these problems can be solved efficiently in the weighted, capacitated case -- improving upon the most general polynomial-time algorithms for these problems. The problem can be constant approximated when $k$ is a constant, and we show that the approximation factor matches the integrality gap of a strengthened LP-relaxation for small $k$. We give improved approximation algorithms for special cases, for example, when the degree bounds are uniform or the graph is sparse.


翻译:本文引入了 emph{ 模拟任务问题 。 在此, 我们也可以在给定图形的某些子图的子图中给我们一个指派问题, 我们正在寻找一个最重的指派, 当局限于任何任务问题时这是可行的。 更准确地说, 我们得到一个在它的边缘和一系列子图中带有重量和容量函数的图表, 以及它的一组子图 $H_ 1,\ dots, H_k$, 以及其中每一组的等级P- 绑定函数。 此外, 在节点设置上, 也给了我们一个 laminar 系统 的 laminal- sider 系统, 在给给定一个普通 $xlent 和 $2 的基数 。 我们想要为每个边缘指定一个非负数的直数值 。 当普通 美元和 美元=2 时, 直数的直径直值会显示一个直径直数, 直径的直径直径比重 。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
22+阅读 · 2021年4月10日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月10日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员