This paper concerns a class of monotone eigenvalue problems with eigenvector nonlinearities (mNEPv). The mNEPv is encountered in applications such as the computation of joint numerical radius of matrices, best rank-one approximation of third-order partial symmetric tensors, and distance to singularity for dissipative Hamiltonian differential-algebraic equations. We first present a variational characterization of the mNEPv. Based on the variational characterization, we provide a geometric interpretation of the self-consistent-field (SCF) iterations for solving the mNEPv, prove the global convergence of the SCF, and devise an accelerated SCF. Numerical examples from a variety of applications demonstrate the theoretical properties and computational efficiency of the SCF and its acceleration.
翻译:本文涉及一类单核亚素非直系性(mNEPv)的单核亚值问题。MNEPv在各种应用中遇到,例如计算矩阵联合数半径、三等部分对称强最佳一级近似值、以及分离汉密尔顿差价对数方程的距离至奇异性。我们首先对 mNEPv提出变式定性。根据变式定性,我们对解决 mNEPv 的自相一致域(SCF)的迭代法进行几何解释,证明SCF的全球趋同,并设计加速的SCF。各种应用中的数字实例显示了SCF及其加速的理论性质和计算效率。