With the rise of handy smart phones in the recent years, the trend of capturing selfie images is observed. Hence efficient approaches are required to be developed for recognising faces in selfie images. Due to the short distance between the camera and face in selfie images, and the different visual effects offered by the selfie apps, face recognition becomes more challenging with existing approaches. A dataset is needed to be developed to encourage the study to recognize faces in selfie images. In order to alleviate this problem and to facilitate the research on selfie face images, we develop a challenging Wild Selfie Dataset (WSD) where the images are captured from the selfie cameras of different smart phones, unlike existing datasets where most of the images are captured in controlled environment. The WSD dataset contains 45,424 images from 42 individuals (i.e., 24 female and 18 male subjects), which are divided into 40,862 training and 4,562 test images. The average number of images per subject is 1,082 with minimum and maximum number of images for any subject are 518 and 2,634, respectively. The proposed dataset consists of several challenges, including but not limited to augmented reality filtering, mirrored images, occlusion, illumination, scale, expressions, view-point, aspect ratio, blur, partial faces, rotation, and alignment. We compare the proposed dataset with existing benchmark datasets in terms of different characteristics. The complexity of WSD dataset is also observed experimentally, where the performance of the existing state-of-the-art face recognition methods is poor on WSD dataset, compared to the existing datasets. Hence, the proposed WSD dataset opens up new challenges in the area of face recognition and can be beneficial to the community to study the specific challenges related to selfie images and develop improved methods for face recognition in selfie images.
翻译:近些年来,随着手巧智能手机的上升,发现捕捉自相图像的趋势。 因此,需要开发一种高效的方法来识别自相图像中的脸孔。 由于相机和自相图像中的脸孔距离很短,而自相应用程序提供了不同的视觉效果,面孔识别就变得更加困难了。 需要开发一套数据集以鼓励研究在自相图像中识别面孔。 为了缓解这一问题并促进对自相图像的研究,我们开发了一个具有挑战性的Ward Sfie Dataset(WSD), 在那里,图像是从不同智能手机的自相摄取的自相复杂图像。 不同于现有的自相图像在被控制环境中被摄取的现有数据集。 WSD数据集包含来自42个个人(即24个女性和18个男性主题)的45,424张图像。 需要开发一套数据集来鼓励研究在自相爱图像中识别面部面部面部,每个对象的图像平均数量为1,082个,最低和最高数量为518个和2,634个。 拟议的数据设置数据集包含若干挑战, 与现有的自相向自相色图像的面面面部,,但不限于的自我对比系统, 升级的图像的自我对比系统, 的自我识别, 的图像的自我识别, 升级的自我识别,在现有的图像的自我识别的自我识别, 的自我识别,在现有的图像的自我识别,在现有的图像的自我识别的自我识别, 的自我识别,在现有的图像的自我识别, 度的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别,在现有的图像的自我识别, 面部位的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 的自我识别, 面部位的自我识别, 的自我识别,在现有的的自我识别, 的自我识别, 的自我识别,在现有的的自我识别,在现有的的自我识别,在现有的的自我识别, 的自我识别, 面部位的自我识别, 面部位的自我识别, 面部位的自我识别, 的