We offer two novel characterizations of the Zeta distribution: first, as a tractable continuous mixture of Negative Binomial distributions (with fixed shape parameter), and second, as a tractable continuous mixture of Poisson distributions. In both cases, the resulting Zeta distributions are identifiable; that is, each mixture can be associated with a unique mixing distribution.
翻译:我们对Zeta分布提供两种新的描述:第一,作为负二元分布(固定形状参数)的可移植连续混合物;第二,作为Poisson分布的可移植连续混合物。 在这两种情况下,由此产生的Zeta分布都是可以识别的;也就是说,每种混合物都可以与独特的混合分布相联系。