Constructing click models and extracting implicit relevance feedback information from the interaction between users and search engines are very important to improve the ranking of search results. Using neural network to model users' click behaviors has become one of the effective methods to construct click models. In this paper, We use Transformer as the backbone network of feature extraction, add filter layer innovatively, and propose a new Filter-Enhanced Transformer Click Model (FE-TCM) for web search. Firstly, in order to reduce the influence of noise on user behavior data, we use the learnable filters to filter log noise. Secondly, following the examination hypothesis, we model the attraction estimator and examination predictor respectively to output the attractiveness scores and examination probabilities. A novel transformer model is used to learn the deeper representation among different features. Finally, we apply the combination functions to integrate attractiveness scores and examination probabilities into the click prediction. From our experiments on two real-world session datasets, it is proved that FE-TCM outperforms the existing click models for the click prediction.


翻译:构建点击模型并从用户和搜索引擎之间的互动中提取隐含的相关性反馈信息对于提高搜索结果的排序非常重要。 使用神经网络模拟用户的点击行为已经成为构建点击模型的有效方法之一。 在本文中, 我们使用变换器作为地貌提取的主网, 添加过滤器层, 并提出一个新的过滤器强化变换器点击模型( FE- TCM ) 用于网络搜索。 首先, 为了减少噪音对用户行为数据的影响, 我们使用可学过滤器来过滤日志噪音。 其次, 在测试假设之后, 我们分别模拟吸引估计和测试预测器, 以输出吸引力评分和测试概率。 一种新型变换模型用来学习不同特性之间的更深的表达方式。 最后, 我们应用组合功能将吸引力评分和测试概率纳入点击预测。 从两个真实世界会话数据集的实验中, 证明FE- TCM 超越了当前点击预测模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
0+阅读 · 2023年3月20日
VIP会员
相关VIP内容
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员