Introducing prior auxiliary information from the knowledge graph (KG) to assist the user-item graph can improve the comprehensive performance of the recommender system. Many recent studies show that the ensemble properties of hyperbolic spaces fit the scale-free and hierarchical characteristics exhibited in the above two types of graphs well. However, existing hyperbolic methods ignore the consideration of equivariance, thus they cannot generalize symmetric features under given transformations, which seriously limits the capability of the model. Moreover, they cannot balance preserving the heterogeneity and mining the high-order entity information to users across two graphs. To fill these gaps, we propose a rigorously Lorentz group equivariant knowledge-enhanced collaborative filtering model (LECF). Innovatively, we jointly update the attribute embeddings (containing the high-order entity signals from the KG) and hyperbolic embeddings (the distance between hyperbolic embeddings reveals the recommendation tendency) by the LECF layer with Lorentz Equivariant Transformation. Moreover, we propose Hyperbolic Sparse Attention Mechanism to sample the most informative neighbor nodes. Lorentz equivariance is strictly maintained throughout the entire model, and enforcing equivariance is proven necessary experimentally. Extensive experiments on three real-world benchmarks demonstrate that LECF remarkably outperforms state-of-the-art methods.
翻译:引入来自知识图谱(KG)的先验辅助信息以帮助用户-项目图可以提高推荐系统的综合性能。许多最近的研究表明,双曲空间的合奏特性适合以上两种类型的图显示的无标度和分层特性。然而,现有的双曲方法忽略了同变考虑,因此它们不能在给定变换下概括对称特征,这严重地限制了模型的能力。此外,它们不能平衡保留异构性和挖掘两个图中的高阶实体信息到用户之间的能力。为了填补这些差距,我们提出了一种严格Lorentz群等变知识增强协同过滤模型(LECF)。创新地,我们通过LECF层,使用Lorentz等变变换联合更新属性嵌入(包含来自KG的高阶实体信号)和双曲嵌入(双曲嵌入之间的距离反映推荐趋势)。此外,我们提出了超几何稀疏注意机制来采样最信息丰富的相邻节点。Lorentz等变性在整个模型中得到严格维护,并且证明了实验上强制具有等变性的必要性。在三个真实世界的基准测试上进行的广泛实验表明,LECF明显优于最先进的方法。