Graph neural networks (GNNs) have shown the power in representation learning over graph-structured user-item interaction data for collaborative filtering (CF) task. However, with their inherently recursive message propagation among neighboring nodes, existing GNN-based CF models may generate indistinguishable and inaccurate user (item) representations due to the over-smoothing and noise effect with low-pass Laplacian smoothing operators. In addition, the recursive information propagation with the stacked aggregators in the entire graph structures may result in poor scalability in practical applications. Motivated by these limitations, we propose a simple and effective collaborative filtering model (SimRec) that marries the power of knowledge distillation and contrastive learning. In SimRec, adaptive transferring knowledge is enabled between the teacher GNN model and a lightweight student network, to not only preserve the global collaborative signals, but also address the over-smoothing issue with representation recalibration. Empirical results on public datasets show that SimRec archives better efficiency while maintaining superior recommendation performance compared with various strong baselines. Our implementations are publicly available at: https://github.com/HKUDS/SimRec.


翻译:图形神经网络(GNNs)已经展示了基于图结构的用户-物品交互数据的表示学习在协同过滤(CF)任务中的优越性。然而,由于递归信息传播,使用低通拉普拉斯平滑算子时,现有的基于GNN的CF模型可能会产生不可区分和不准确的用户(物品)表示,因此会产生过度平滑和噪声效应。此外,整个图结构中堆叠聚合器的递归信息传播可能导致实际应用中的可扩展性差。受这些局限的启发,我们提出了一个简单而有效的协同过滤模型(SimRec),将知识蒸馏和对比学习的优势结合起来。在SimRec中,启用了教师GNN模型和轻量级学生网络之间的自适应转移知识,不仅可以保留全局协作信号,还可以通过表示重新校准来解决过度平滑问题。公共数据集上的实证结果表明,与各种强基线相比,SimRec实现了更好的效率,同时保持了卓越的推荐性能。我们的实现已经在https://github.com/HKUDS/SimRec公开。

0
下载
关闭预览

相关内容

协同过滤(英语:Collaborative Filtering),简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人透过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。协同过滤又可分为评比(rating)或者群体过滤(social filtering)。其后成为电子商务当中很重要的一环,即根据某顾客以往的购买行为以及从具有相似购买行为的顾客群的购买行为去推荐这个顾客其“可能喜欢的品项”,也就是借由社群的喜好提供个人化的信息、商品等的推荐服务。除了推荐之外,近年来也发展出数学运算让系统自动计算喜好的强弱进而去芜存菁使得过滤的内容更有依据,也许不是百分之百完全准确,但由于加入了强弱的评比让这个概念的应用更为广泛,除了电子商务之外尚有信息检索领域、网络个人影音柜、个人书架等的应用等。
WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
专知会员服务
41+阅读 · 2021年3月21日
ICLR2023推荐系统投稿论文集锦
图与推荐
0+阅读 · 2022年11月15日
SIGIR2022 | 推荐算法之对比学习篇
机器学习与推荐算法
6+阅读 · 2022年7月21日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
基于图神经网络的推荐算法总结
机器学习与推荐算法
25+阅读 · 2021年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
12+阅读 · 2021年5月3日
VIP会员
相关VIP内容
WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
专知会员服务
41+阅读 · 2021年3月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员