In this paper, we provide a framework for constructing entanglement-assisted quantum error-correcting codes (EAQECCs) from classical additive codes over a finite commutative local Frobenius ring $\mathcal{R}$. At the heart of the framework, and this is one of the main technical contributions of our paper, is a procedure to construct, for an additive code $\mathcal{C}$ over $\mathcal{R}$, a generating set for $\mathcal{C}$ that is in standard form, meaning that it consists purely of isotropic generators and hyperbolic pairs. Moreover, when $\mathcal{R}$ is a Galois ring, we give an exact expression for the minimum number of pairs of maximally entangled qudits required to construct an EAQECC from an additive code over $\mathcal{R}$, which significantly extends known results for EAQECCs over finite fields. We also demonstrate how adding extra coordinates to an additive code can give us a certain degree of flexibility in determining the parameters of the EAQECCs that result from our construction.
翻译:在本文中, 我们提供了一个框架, 用于构建由传统添加编码( EAQECCs) 以当地微量量量子错误校正代码( EAQECCs) 构建 。 在框架的核心, 这是本文的主要技术贡献之一 。 在框架的核心, 是一个用于构建添加编码 $\ mathcal{ C}$ 超过$\ mathcal{R} 的程序, 以标准形式生成 $\ mathcal{C} $, 意思是它纯由异质生成器和双曲配对组成。 此外, 当 $\ mathcal{R} $ 是伽洛瓦环时, 我们给出了一种精确的表达方式, 用于构建 以 $\ mathcal{ R}$ 为单位的添加编码 EAQECC 所需的最小数量 。 这大大扩展了 EAQECC 的已知结果。 我们还演示了在添加添加添加编码时如何给我们从 EAQC 构建参数中得出某种程度的灵活性 。