To assist human users according to their individual preference in assembly tasks, robots typically require user demonstrations in the given task. However, providing demonstrations in actual assembly tasks can be tedious and time-consuming. Our thesis is that we can learn user preferences in assembly tasks from demonstrations in a representative canonical task. Inspired by previous work in economy of human movement, we propose to represent user preferences as a linear function of abstract task-agnostic features, such as movement and physical and mental effort required by the user. For each user, we learn their preference from demonstrations in a canonical task and use the learned preference to anticipate their actions in the actual assembly task without any user demonstrations in the actual task. We evaluate our proposed method in a model-airplane assembly study and show that preferences can be effectively transferred from canonical to actual assembly tasks, enabling robots to anticipate user actions.
翻译:为了根据用户在组装任务方面的个人偏好协助用户,机器人通常要求用户在特定任务中进行演示。然而,在实际组装任务中进行演示既乏味又耗时。我们的理论是,我们可以从具有代表性的装配任务的演示中学习用户在组装任务的偏好。受人类运动经济领域以往工作的启发,我们提议将用户偏好作为抽象任务 -- -- 不可知性特征的线性功能,如用户要求的移动和身心努力。对于每个用户,我们从一个典型任务中的演示中了解他们的偏好,并利用学到的偏好来预测他们在实际组装任务中的行动,而没有实际任务的用户演示。我们在模型 -- -- 飞机组装研究中评估了我们提出的方法,并表明,偏好可以有效地从装配任务向实际的装配任务转移,使机器人能够预测用户的行动。