We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD). To handle performance degradation caused by domain shifts that are difficult to detect or too frequent to adapt, domain generalization techniques are preferred. However, currently available datasets have difficulties in evaluating these techniques, such as limited number of values for parameters that cause domain shifts (domain shift parameters). In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG. The dataset consists of five machine types and three domain shift scenarios for each machine type. We prepared at least two values for the domain shift parameters in the source domain. Also, we introduced domain shifts that can be difficult to notice. Experimental results using two baseline systems indicate that the dataset reproduces the domain shift scenarios and is useful for benchmarking domain generalization techniques.
翻译:我们提出了一个机器声音数据集,用于为异常声音探测(ASD)的域域常规化技术(ASD)进行基准测试。为了处理由于难以探测或适应频率过高的域变换造成的性能退化问题,我们倾向于采用域变换技术。然而,目前可用的数据集在评估这些技术方面有困难,例如导致域变换的参数(域变换参数)的数值有限。在本文件中,我们为域变换技术(称为MIMII DG)提供了第一个域变换数据集。数据集包括5个机型和每个机型的3个域变换假设。我们为源域域的域变换参数至少准备了2个值。此外,我们采用了难以察觉的域变法。使用两个基线系统进行的实验结果表明,数据集复制了域变换假设,对基准域变换技术有用。