Object recognition and viewpoint estimation lie at the heart of visual understanding. Recent works suggest that convolutional neural networks (CNNs) fail to generalize to out-of-distribution (OOD) category-viewpoint combinations, ie. combinations not seen during training. In this paper, we investigate when and how such OOD generalization may be possible by evaluating CNNs trained to classify both object category and 3D viewpoint on OOD combinations, and identifying the neural mechanisms that facilitate such OOD generalization. We show that increasing the number of in-distribution combinations (ie. data diversity) substantially improves generalization to OOD combinations, even with the same amount of training data. We compare learning category and viewpoint in separate and shared network architectures, and observe starkly different trends on in-distribution and OOD combinations, ie. while shared networks are helpful in-distribution, separate networks significantly outperform shared ones at OOD combinations. Finally, we demonstrate that such OOD generalization is facilitated by the neural mechanism of specialization, ie. the emergence of two types of neurons -- neurons selective to category and invariant to viewpoint, and vice versa.


翻译:对象识别和观点估计是视觉理解的核心。 最近的工程表明, 进化神经网络(CNNs)无法概括出分布( OOOD) 类别视图组合, 也就是说, 培训期间看不到的组合。 在本文中, 我们调查何时以及如何可能实现这种OOD的概括化,方法是通过对受过训练的对对象类别和 OOOD组合的3D观点进行分类的CNNs 进行评估, 并确定有助于OOOOD一般化的神经机制。 我们表明, 增加分布组合( 即数据多样性)的数量大大改进了对OOOD组合的概括化, 即使使用同等数量的培训数据。 我们在单独和共享的网络结构中比较学习类别和观点, 观察分布和 OOOD组合方面截然不同的趋势, 也就是说, 共享的网络在分布上很有帮助, 分离的网络大大超出OOD组合的组合的组合。 最后, 我们证明, 两种类型神经系统的出现 -- 选择类别和变式观点, 以及变式观点。

6
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
6+阅读 · 2019年12月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员