Online influence maximization has attracted much attention as a way to maximize influence spread through a social network while learning the values of unknown network parameters. Most previous works focus on single-item diffusion. In this paper, we introduce a new Online Competitive Influence Maximization (OCIM) problem, where two competing items (e.g., products, news stories) propagate in the same network and influence probabilities on edges are unknown. We adapt the combinatorial multi-armed bandit (CMAB) framework for the OCIM problem, but unlike the non-competitive setting, the important monotonicity property (influence spread increases when influence probabilities on edges increase) no longer holds due to the competitive nature of propagation, which brings a significant new challenge to the problem. We prove that the Triggering Probability Modulated (TPM) condition for CMAB still holds, and then utilize the property of competitive diffusion to introduce a new offline oracle, and discuss how to implement this new oracle in various cases. We propose an OCIM-OIFU algorithm with such an oracle that achieves logarithmic regret. We also design an OCIM-ETC algorithm that has worse regret bound but requires less feedback and easier offline computation. Our experimental evaluations demonstrate the effectiveness of our algorithms.


翻译:在线影响力最大化作为一种通过社交网络最大限度地扩大影响的方式,在学习未知网络参数的价值的同时,吸引了人们的极大关注,作为通过社交网络最大限度地扩大影响的一种方式,同时学习了未知网络参数的价值。以前的工作大多侧重于单一项目的传播。在本文中,我们引入了一个新的在线竞争性竞争影响最大化(OCIM)问题,其中两个竞争项目(如产品、新闻报道)在同一网络中传播,并影响边缘的概率。我们调整了组合式多武装匪帮框架(CMAB)来应对OCIM问题,但与非竞争环境不同,我们提出了重要的单一属性(当边缘影响增加时,影响扩散会增加)不再由于传播的竞争性质而存在,这给这一问题带来了新的重大挑战。我们证明,CMAB的三重概率混合(TPM)条件仍然在网络中存在,并影响边缘的概率。我们利用竞争性传播的特性来引入新的离线或断层,并讨论如何在各种情况下落实这一新标志。我们建议采用OCIM-OIFU的算法,其影响会增加,因为这种特性使得对逻辑-ARC的反馈更加困难。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
12+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
9+阅读 · 2018年12月19日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Arxiv
0+阅读 · 2021年4月14日
Arxiv
0+阅读 · 2021年4月12日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关论文
Top
微信扫码咨询专知VIP会员