In this paper, we provide the mathematical foundations for the randomness of shapes and the distributions of smooth Euler characteristic transform. Based on these foundations, we propose an approach for testing hypotheses on random shapes. Simulation studies are provided to support our mathematical derivations and show the performance of our proposed hypothesis testing framework. Our discussions connect the following fields: algebraic and computational topology, probability theory and stochastic processes, Sobolev spaces and functional analysis, statistical inference, and medical imaging.
翻译:在本文中,我们为光滑的尤勒特征变异的随机性及其分布提供了数学基础。 基于这些基础, 我们提出了一个随机形状测试假设的方法。 提供了模拟研究来支持我们的数学推论并展示了我们提议的假设测试框架的性能。 我们的讨论将以下领域联系起来:代数和计算表层学、概率理论和随机过程、 Sobolev空间和功能分析、统计推论和医学成像。