We consider the problem of empirical risk minimization given a database, using the gradient descent algorithm. We note that the function to be optimized may be non-convex, consisting of saddle points which impede the convergence of the algorithm. A perturbed gradient descent algorithm is typically employed to escape these saddle points. We show that this algorithm, that perturbs the gradient, inherently preserves the privacy of the data. We then employ the differential privacy framework to quantify the privacy hence achieved. We also analyze the change in privacy with varying parameters such as problem dimension and the distance between the databases.
翻译:我们用梯度下降算法来考虑将实验风险最小化的问题。 我们注意到,要优化的功能可能是非隐蔽的, 包括阻碍算法趋同的马鞍点。 通常会使用受扰动的梯度下降算法来避开这些马鞍点。 我们显示,这种干扰梯度的算法本质上会保护数据的隐私。 然后我们使用差异隐私框架来量化由此实现的隐私。 我们还用问题大小和数据库之间的距离等不同参数分析隐私的变化。