In this paper, we propose a known-plaintext attack (KPA) method based on deep learning for traditional chaotic encryption scheme. We employ the convolutional neural network to learn the operation mechanism of chaotic cryptosystem, and accept the trained network as the final decryption system. To evaluate the attack performance of different networks on different chaotic cryptosystem, we adopt two neural networks to perform known-plaintext attacks on two distinct chaotic encryption schemes. The experimental results demonstrate the potential of deep learning-based method for known-plaintext attack against chaotic cryptosystem. Different from the previous known-plaintext attack methods, which were usually limited to a specific chaotic cryptosystem, a neural network can be applied to the cryptanalysis of various chaotic cryptosystems with deep learning-based approach, while several different networks can be designed for the cryptanalysis of chaotic cryptosystems. This paper provides a new idea for the cryptanalysis of chaotic image encryption algorithm.


翻译:在本文中,我们基于对传统混乱加密计划的深层次学习,提出了已知的平台攻击(KPA)方法。我们使用进化神经网络学习混乱加密系统的操作机制,并接受受过训练的网络作为最后解密系统。为了评估不同混乱加密系统的不同网络的攻击性能,我们采用了两个神经网络,对两种截然不同的混乱加密系统进行已知的平台攻击。实验结果显示了对混乱的加密系统进行已知的平台攻击的深层次学习方法的潜力。与以往已知的平台攻击方法不同,这些方法通常局限于特定的混乱加密系统,因此,可以应用神经网络来对各种混乱加密系统进行加密分析,而若干不同的网络可以设计用于对混乱的加密加密系统进行加密分析。本文为混乱图像加密算法的加密分析提供了一个新的想法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2020年6月16日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员